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VANADIUM 

The existence of a stable magnetic moment in an itinerant-

electron ferromagnet requires a high density of states around the 

Fermi energy of the non-Magnetic energy b.ands, a condition which 

is obtained when there are partially filled atomic states having 

relatively small interatomic overlap in the crystal, as in the 3d 

states of iron, nickel , and cobalt [18J. Thus, if the lattice 

of a non-magnetic transition metal with partially filled atomic 

3d level were expanded, the decr~ase in overlap of the d-states 

and the concomitant increase in the density of states might cause 

the material to become magnetic. The spin-polarized Xa method 

has been shown by Connolly [19J and others to be capable of 

explain i ng the behavior of the magnetic transition metals. It has 

therefore bee n employed in an effort to dete rmine the nature of the 

magnetic transition which would occur in V if its lattice could be 

expanded substantially beyond the equilibrium size. The magnetic 

momen t has been calculated as the difference bet,~een the number of 

major1ty-spin and minority-spin electrons per unit cell, with an 

ass umed ferromagnetic arrangemen t of the moments; it is shmffi as a 

function of lattice parameter in Fig. 4. In order to obtain this result, 

the self-consistency iterations were initiated "Hh a net magnetic 

moment (net spin density) at each lattice constant and were continued 

until the net magnetic moment, as well as the individual eigenvalues 

and other indicators of self-consistency, had stabilized. The 

calculation correctly predicts the lack of permanent magnetic moment 
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i Fig. 4. The dependence of total energy on magnetization near the 
, 
: transition is apparently extr~m.:!l}' small, as might be expected . This 

'. is evidenced computationally by very slow convergence of the net 

magnetic moment from lattice constants of about 6.3 to about 7.3 atomic 

units (a.u.), which makes it impractical to compute tIle precise nature 

of the magnetization curve in thi s r~g Lon. I~wevcr, it sc~ms clear 

that the curve must be bracketed, in the spin-polarized x~ mod~l, 

by the solid and dashed >l cglncnts of Fig . 4. The lran" ition is ell' ;nly 

rather abrupt, even with the unc('rt ;linty in tlie rc);i on of initi:ll riSe. 

In addition, the tIm calculated pOinl>l :~ hown fOI" a Lilli,'" l'O)Il:;t.')nt of 

7.0 a.u. represent two distinct self-consi"tcnt solutions, ari"inc, 

respectively, from large and sma ll initial llIa!',lh!tic 1:IO r.\('llt for the 

self-consistency iterations. (At no olli('r lUlt ice COIl,a,"ll for 

which calculations were perform('d is thcH! any evilh'm'c lhal thl! final ' 

configuration depends on the asslIml!d initial configur::Jtion.) This 

result appears to indicate the presence of a double minimum in the 

energy versus magnetization curve, for lattice constants near 7 a.u. 

The magnetization curve is drawn through the point jJ "" 2.2 electrons/atom 

for 7.0 a.u. because that pOint corresponds to the configuration of 

lower total energy. 

The cohesive energy of V ,~as calculated, relative to the 

isolated atom in the 3d44sl configuration (the spin-polarized XCX 

atomic ground state and thus the API, separated-atom limit). It is 

plotted as a function of the lattice parameter, in Fig. S. The 

experimental equilibrium cohesive energy [12] is indicated as the error 

bar in Fig. 5, for comparison, as is the experimentally observed 


